cAMP activation of PKA defines an ancient signaling mechanism.
نویسندگان
چکیده
cAMP and the cAMP binding domain (CBD) constitute a ubiquitous regulatory switch that translates an extracellular signal into a biological response. The CBD contains alpha- and beta-subdomains with cAMP binding to a phosphate binding cassette (PBC) in the beta-sandwich. The major receptors for cAMP in mammalian cells are the regulatory subunits (R-subunits) of PKA where cAMP and the catalytic subunit compete for the same CBD. The R-subunits inhibit kinase activity, whereas cAMP releases that inhibition. Here, we use NMR to map at residue resolution the cAMP-dependent interaction network of the CBD-A domain of isoform Ialpha of the R-subunit of PKA. Based on H/D, H/H, and N(z) exchange data, we propose a molecular model for the allosteric regulation of PKA by cAMP. According to our model, cAMP binding causes long-range perturbations that propagate well beyond the immediate surroundings of the PBC and involve two key relay sites located at the C terminus of beta(2) (I163) and N terminus of beta(3) (D170). The I163 site functions as one of the key triggers of global unfolding, whereas the D170 locus acts as an electrostatic switch that mediates the communication between the PBC and the B-helix. Removal of cAMP not only disrupts the cap for the B' helix within the PBC, but also breaks the circuitry of cooperative interactions stemming from the PBC, thereby uncoupling the alpha- and beta-subdomains. The proposed model defines a signaling mechanism, conserved in every genome, where allosteric binding of a small ligand disrupts a large protein-protein interface.
منابع مشابه
Study of PKA binding sites in cAMP-signaling pathway using structural protein-protein interaction networks
Backgroud: Protein-protein interaction, plays a key role in signal transduction in signaling pathways. Different approaches are used for prediction of these interactions including experimental and computational approaches. In conventional node-edge protein-protein interaction networks, we can only see which proteins interact but ‘structural networks’ show us how these proteins inter...
متن کاملAddicting drugs utilize a synergistic molecular mechanism in common requiring adenosine and Gi- dimers
The mesolimbic dopamine system and cAMP-dependent protein kinase A (PKA) pathways are strongly implicated in addictive behaviors. Here we determine the role of dopamine D2 receptors (D2) in PKA signaling responses to -opioid (DOR) and cannabinoid (CB1) receptors. We find in NG108-15 D2 cells and in cultured primary neurons that a brief exposure to saturating concentrations of DOR and CB1 agonis...
متن کاملDifferential PKA activation and AKAP association determines cell fate in cancer cells
BACKGROUND The dependence of malignant properties of colorectal cancer (CRC) cells on IGF1R signaling has been demonstrated and several IGF1R antagonists are currently in clinical trials. Recently, we identified a novel pathway in which cAMP independent PKA activation by TGFβ signaling resulted in the destabilization of survivin/XIAP complex leading to increased cell death. In this study, we ev...
متن کاملGenistein activates the 3',5'-cyclic adenosine monophosphate signaling pathway in vascular endothelial cells and protects endothelial barrier function.
The soy phytoestrogen, genistein, has an array of biological actions, including weak estrogenic effects, inhibition of tyrosine kinase, and cellular antioxidant activity. Recent studies showed that genistein may improve vascular function, but the mechanism is unclear. We show that genistein stimulates intracellular cAMP accumulation in intact bovine aortic endothelial cells and human umbilical ...
متن کاملPKA-I Holoenzyme Structure Reveals a Mechanism for cAMP-Dependent Activation
Protein kinase A (PKA) holoenzyme is one of the major receptors for cyclic adenosine monophosphate (cAMP), where an extracellular stimulus is translated into a signaling response. We report here the structure of a complex between the PKA catalytic subunit and a mutant RI regulatory subunit, RIalpha(91-379:R333K), containing both cAMP-binding domains. Upon binding to the catalytic subunit, RI un...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 104 1 شماره
صفحات -
تاریخ انتشار 2007